Forestry & Agriculture Biotechnology Institute (FABI) – polyphagous shot hole borer beetle

2018-01-25
Forestry & Agriculture Biotechnology Institute (FABI) – fabinet.up.ac.za
The polyphagous shot hole borer (PSHB) and its fungal symbiont Fusarium euwallaceae: a new invasion in South Africa
Trudy Paap; Z. W. de Beer; D. Migliorini; W. J. Nel; M. J. Wingfield

Abstract
The polyphagous shot hole borer (PSHB), an ambrosia beetle (Coleoptera: Curculeonidae: Scolytinae) native to Asia, together with its fungal symbiont Fusarium euwallaceae, has emerged as an important invasive pest killing avocado and other trees in Israel and the United States. The PSHB is one of three cryptic species in the Euwallacea fornicatus species complex, the taxonomy of which remains to be resolved. The surge in the global spread of invasive forest pests such as the PSHB has led to the development of programmes utilising sentinel tree plantings to record new host-pest interactions. During routine surveys of tree health in botanical gardens of South Africa undertaken as part of a sentinel project, an ambrosia beetle/fungal associate was detected damaging Platanus x acerifolia (London Plane) in the KwaZulu-Natal National Botanical Gardens, Pietermaritzburg. Identification of the beetle by sequencing part of the mitochondrial cytochrome oxidase c subunit 1 (COI) gene confirmed its identity as PSHB, and specifically one of the invasive haplotypes of the beetle. The associated fungus F. euwallaceae was identified based on phylogenetic analysis of elongation factor (EF 1-a) sequences. Koch’s postulates have confirmed the pathogenicity of fungal isolates to P. x acerifolia. This is the first report of PSHB and its fungal symbiont causing Fusarium dieback in South Africa. This report also represents the first verified case of a damaging invasive forest pest detected in a sentinel planting project, highlighting the importance of such studies. Given the potential impact these species present to urban trees, native biodiversity and agriculture, both the PSHB and its fungal symbiont should be included in invasive species regulations in South Africa.

National Center for Biotechnology Information – Evaluations of Insecticides and Fungicides for Reducing Attack Rates of a new invasive ambrosia beetle (Euwallacea Sp., Coleoptera: Curculionidae: Scolytinae) in Infested Landscape Trees in California

2017-05-22
National Center for Biotechnology Information
Evaluations of Insecticides and Fungicides for Reducing Attack Rates of a new invasive ambrosia beetle (Euwallacea Sp., Coleoptera: Curculionidae: Scolytinae) in Infested Landscape Trees in California
“The combination of a systemic insecticide (emamectin benzoate), a contact insecticide (bifenthrin), and a fungicide (metconazole) provided some level of control when applied on moderate and heavily infested trees.”

Plant Disease – Host Range of Fusarium Dieback and Its Ambrosia Beetle (Coleoptera: Scolytinae) Vector in Southern California

2013-07
Plant Disease
Host Range of Fusarium Dieback and Its Ambrosia Beetle (Coleoptera: Scolytinae) Vector in Southern California
Akif Eskalen; Richard Stouthamer; Shannon Colleen Lynch; Paul F. Rugman-Jones; Mathias Twizeyimana; Alex Gonzalez; Tim Thibault
PDF Report

Abstract:
The polyphagous shot hole borer (PSHB) is an invasive ambrosia beetle that forms a symbiosis with a new, as-yet-undescribed Fusarium sp., together causing Fusarium dieback on avocado and other host plants in California and Israel. In California, PSHB was first reported on black locust in 2003 but there were no records of fungal damage until 2012, when a Fusarium sp. was recovered from the tissues of several backyard avocado trees infested with PSHB in Los Angeles County. The aim of this study was to determine the plant host range of the beetle–fungus complex in two heavily infested botanical gardens in Los Angeles County. Of the 335 tree species observed, 207 (62%), representing 58 plant families, showed signs and symptoms consistent with attack by PSHB. The Fusarium sp. was recovered from 54% of the plant species attacked by PSHB, indicated by the presence of the Fusarium sp. at least at the site of the entry hole. Trees attacked by PSHB included 11 species of California natives, 13 agriculturally important species, and many common street trees. Survey results also revealed 19 tree species that function as reproductive hosts for PSHB. Additionally, approximately a quarter of all tree individuals planted along the streets of southern California belong to a species classified as a reproductive host. These data suggest the beetle–disease complex potentially may establish in a variety of plant communities locally and worldwide.